Total Pages-4

22-23/12452

M.Sc. 1st Semester Examination-2022-23

PHYSICS

Course ID : 12452

Course Code : PHYS/102C

Course Title : Quantum Mechanics-I and Classical Electrodynamics-I

Time : 2 Hours

Full Marks: 40

The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit–I

1. Answer any three of the following :

(a) For given wave function $\Psi(\mathbf{x}) = Ae^{-\mathbf{x}^2}$, calculate $\overline{\mathbf{x}}$ and $\overline{\mathbf{p}_{\mathbf{x}}}$.

- (b) What is the physical significance of zero point energy of a simple harmonic oscillator?
- (c) Establish that the operators of simultaneous eigenfunction commute with each other.

(Turn Over)

 $2 \times 3 = 6$

(d) By mathematical induction on n (positive integer), show that $[x^n, p] = i\hbar nx^{n-1}$.

2

- (e) Give the examples of wave functions for position uncertainty zero and infinity.
- 2. Answer any two of the following : 4×2=8
 - (a) In the context of a simple Harmonic oscillator, calculate the uncertainty product.
 - (b) For coherent state $|\alpha\rangle$, establish $\int |\alpha\rangle \langle \alpha| d^2 \alpha = \pi$
 - (c) Shat that $(\sigma A)(\sigma B) = A \cdot B + i\sigma \cdot (A \times B)$, where A and B are arbitrary operators and σ being the Pauli matrices.
 - (d) Show that in coordinate representation the momentum

operator is $\hat{p} = -i\hbar \frac{d}{dx}$.

- 3. Answer any one of the following :
 - (a) What are the three pictures in quantum machanics? Discuss the time evolution of the dynamical in the three pictures in quantum mechanics. 1+5
 - (b) For angular momentum operator L, show that $L \times L = i\hbar L$.

3

4. Answer any three of the following :

2×3=6

- (a) What do you mean by gauge transformation? Discuss the significance of the gauge transformation.
- (b) What do you mean by conservation charge? Establish the equation of continuity.
- (c) What is Green's function?
- (d) What is the condition for emission of Cerenkov radiation of a particular frequency? Can a neutron give rise to Cerenkov radiation?
- (e) Why a uniformly moving charge does not radiate?
- 5. Answer any two of the following : $4 \times 2=8$
 - (a) Find the direction of maximum and minimum radiation in case of collinear motion of a charged particle.
 - (b) Derive the expression of total power radiated for a linearly accelerated charged particle.
 - (c) Find out the expression of electric and magnetic field for a uniformly moving charged particle.

22-23/12452

(Turn Over)

22-23/12452

(Continued)

6x1=6

(d) Show that the vector potentials $\vec{A} = -ixz - jyz$ and

 $\ddot{A}' = \frac{1}{2} (x^2 + y^2) \hat{k}$ gives rise to the same magnetic field. Find the gauze function in this case.

- 6. Answer any one of the following :
 - (a) What is radiation reaction? Derive the Abrahum-Lorentz formula for the radiation reaction force. What
 - (b) Obtain the Lienard-Weichert potentials for an accelerated charge.

is the problem associated with this formula?

22-23/12452

TB-60

6×1=6

1+4+1